Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0861120100140010097
Korean Journal of Oriental Preventive Medicine
2010 Volume.14 No. 1 p.97 ~ p.110
Angiogenetic Effect of Onchung-Eum on Full-thickness Skin Wound in Rats
Kim Bum-Hoi

Lee Hai-Woong
Sohn Nak-Won
Park Dong-Il
Abstract
The wound healing process can be categorized as follows : inflammation, fibroplasia, neovascularization, collagen deposition, epithelialization, and wound contraction. During the healing process, various growth factors are secreted to accelerate wound healing. Previous studies have demonstrated that endogenous growth factors, such as vascular endothelial growth factor(VEGF) are the important regulatory polypeptides for coordinating the healing process. They are released from macrophages, fibroblasts, and keratinocytes at the site of injury and participate in the regulation of reepithelization, granulation tissue formation, collagen synthesis and neovascularization. Onchung-Um has been used clinically to treat various skin diseases. In addition, Onchung-Um has been also used for congestive inflammations. In the present study, we evaluated the effects of Onchung-Um on wound healing process and wound size reduction in rats. Full-thickness skin wounds () were created on the back of rats. Rats were then divided into 2 groups : The Onchung-Um treated group that was orally administered with a dose of 193.9mg/100g of Onchung-Um extract per day for 15 days and Control group without Onchung-Um administration. Moreover, the histological changes and VEGF immunoexpressions of two groups were estimated. In results, wound closures were significantly accelerated by oral administration of Onchung-Um extract. Furthermore, in Onchung-Um treated group, there were significant increases in fibroblast migration, epithelialization compared with the Control group. VEGF expressions were also increased in Onchung-Um treated group. This study has therefore demonstrated the Onchung-Um can significantly improve the quality of wound healing and scar formation and the oral administration of Onchung-Um extract may increase early tissue angiogenesis in the incisional wound of an experimental animal model.
KEYWORD
Wound healing, Onchung-Um, VEGF, Full-thickness skin wound
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)